2 research outputs found

    ASKI: full-sky lensing map making algorithms

    Full text link
    Within the context of upcoming full-sky lensing surveys, the edge-preserving non- linear algorithm Aski is presented. Using the framework of Maximum A Posteriori inversion, it aims at recovering the full-sky convergence map from surveys with masks. It proceeds in two steps: CCD images of crowded galactic fields are deblurred using automated edge-preserving deconvolution; once the reduced shear is estimated, the convergence map is also inverted via an edge- preserving method. For the deblurring, it is found that when the observed field is crowded, this gain can be quite significant for realistic ground-based surveys when both positivity and edge-preserving penalties are imposed during the iterative deconvolution. For the convergence inversion, the quality of the reconstruction is investigated on noisy maps derived from the horizon N-body simulation, with and without Galactic cuts, and quantified using one-point statistics, power spectra, cluster counts, peak patches and the skeleton. It is found that the reconstruction is able to interpolate and extrapolate within the Galactic cuts/non-uniform noise; its sharpness-preserving penalization avoids strong biasing near the clusters of the map; it reconstructs well the shape of the PDF as traced by its skewness and kurtosis; the geometry and topology of the reconstructed map is close to the initial map as traced by the peak patch distribution and the skeleton's differential length; the two-points statistics of the recovered map is consistent with the corresponding smoothed version of the initial map; the distribution of point sources is also consistent with the corresponding smoothing, with a significant improvement when edge preserving prior is applied. The contamination of B-modes when realistic Galactic cuts are present is also investigated. Leakage mainly occurs on large scales.Comment: 24 pages, 21 figures accepted for publication to MNRAS

    Importance of Baseline Prognostic Factors With Increasing Time Since Initiation of Highly Active Antiretroviral Therapy: Collaborative Analysis of Cohorts of HIV-1-Infected Patients

    No full text
    Background: The extent to which the prognosis for AIDS and death of patients initiating highly active antiretroviral therapy (HAART) continues to be affected by their characteristics at the time of initiation (baseline) is unclear. Methods: We analyzed data on 20,379 treatment-naive HIV-1- infected adults who started HAART in 1 of 12 cohort studies in Europe and North America (61,798 person-years of follow-up, 1844 AIDS events, and 1005 deaths). Results: Although baseline CD4 cell count became less prognostic with time, individuals with a baseline CD4 count 350 cells/μL (hazard ratio for AIDS = 2.3, 95% confidence interval [CI]: 1.0 to 2.3; mortality hazard ratio = 2.5, 95% CI: 1.2 to 5.5, 4 to 6 years after starting HAART). Rates of AIDS were persistently higher in individuals who had experienced an AIDS event before starting HAART. Individuals with presumed transmission by means of injection drug use experienced substantially higher rates of AIDS and death than other individuals throughout follow-up (AIDS hazard ratio = 1.6, 95% CI: 0.8 to 3.0; mortality hazard ratio = 3.5, 95% CI: 2.2 to 5.5, 4 to 6 years after starting HAART). Conclusions: Compared with other patient groups, injection drug users and patients with advanced immunodeficiency at baseline experience substantially increased rates of AIDS and death up to 6 years after starting HAART
    corecore